On the Partial Stability of Nonlinear Discrete-Time Systems with Delay

Author:

Vorotnikov Vladimir

Abstract

A system of nonlinear discrete (finite-difference) of a general form with a bounded delay is considered. Interest in the tasks of qualitative analysis of such systems has increased significantly in recent years. At the same time, the problem of stability with respect to all variables of the zero equilibrium position, which has a great generality, is mainly analyzed in domestic and foreign literature. The main research method is a discrete-functional analogue of the direct Lyapunov method. In this article, it is assumed that the system under consideration admits a “partial” (in some part of the state variables) zero equilibrium position. The problem of stability of a given equilibrium position is posed, and stability is considered not in all, but only in relation to a part of the variables that determine this equilibrium position. Such a problem belongs to the class of problems of partial stability, which are actively studied for systems of various forms of mathematical description. The proposed statement of the problem complements the scope of the indicated studies in relation to the system under consideration. To solve this problem, a discrete version of the Lyapunov– Krasovskii functionals method is used in the space of discrete functions with appropriate specification of the functional requirements. To expand the capabilities of this method, it is proposed to use two types of additional auxiliary (vector, generally speaking) discrete functions in order to: 1) adjustments of the phase space region of the system in which the Lyapunov–Krasovskii functional is constructed; 2) finding the necessary estimates of the functionals and their differences (increment) due to the system under consideration, on the basis of which conclusions about partial stability are made. The expediency of this approach lies in the fact that as a result, the Lyapunov-Krasovskii functional, as well as its difference due to the system under consideration, can be alternating in the domain that is usually considered when analyzing partial stability. Sufficient conditions of partial stability, partial uniform stability, and partial uniform asymptotic stability of the specified type are obtained. The features of the proposed approach are shown on the example of two classes of nonlinear systems of a given structure, for which partial stability is analyzed in parameter space. Attention is drawn to the expediency of using a one-parameter family of functionals.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Reference38 articles.

1. Халанай А., Векслер Д. Качественная теория импульсных систем. М.: Мир, 1971. 309 c.

2. Фурасов В.Д. Устойчивость и стабилизация дискретных процессов. М.: Наука, 1982. 192 с.

3. Elaydi S. An Introduction to Difference Equations, 3-ed. N.Y.: Springer, 2005. 540 p. DOI: 10.1007/0-387-27602-5.

4. Александров А.Ю., Жабко А.П., Платонов А.В. Устойчивость движений дискретных динамических систем. СПб.: Изд. Дом Федоровой Г.В., 2015. 154 с.

5. Румянцев В.В. Об устойчивости движения по отношению к части переменных // Вестн. МГУ. Сер. Матем., Механика, Физика, Астрономия, Химия. 1957. № 4. C. 9–16.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3