Anomaly and Cyber Attack Detection Technique Based on the Integration of Fractal Analysis and Machine Learning Methods

Author:

Kotenko Igor,Saenko Igor,Lauta Oleg,Kriebel Alexander

Abstract

In modern data transmission networks, in order to constantly monitor network traffic and detect abnormal activity in it, as well as identify and classify cyber attacks, it is necessary to take into account a large number of factors and parameters, including possible network routes, data delay times, packet losses and new traffic properties that differ from normal. All this is an incentive to search for new methods and techniques for detecting cyber attacks and protecting data networks from them. The article discusses a technique for detecting anomalies and cyberattacks, designed for use in modern data networks, which is based on the integration of fractal analysis and machine learning methods. The technique is focused on real-time or near-real-time execution and includes several steps: (1) detecting anomalies in network traffic, (2) identifying cyber attacks in anomalies, and (3) classifying cyber attacks. The first stage is implemented using fractal analysis methods (evaluating the self-similarity of network traffic), the second and third stages are implemented using machine learning methods that use cells of recurrent neural networks with a long short-term memory. The issues of software implementation of the proposed technique are considered, including the formation of a data set containing network packets circulating in the data transmission network. The results of an experimental evaluation of the proposed technique, obtained using the generated data set, are presented. The results of the experiments showed a rather high efficiency of the proposed technique and the solutions developed for it, which allow early detection of both known and unknown cyber attacks.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimation of the Multifractal Spectrum Characteristics of Fractal Dimension of Network Traffic and Computer Attacks in IoT;Proceedings of Telecommunication Universities;2024-07-03

2. Characteristics Assessment of Multifractal Spectrum of Fractal Dimension IoT-Traffic;2024 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO);2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3