On the Expediency and Possibilities of Approximating a Pure Delay Link

Author:

Zhmud Vadim,Dimitrov Lubomir,Sablina Galina,Roth Hubert,Nosek Jaroslav,Hardt Wolfram

Abstract

When solving problems of controlling an object with delay, it is often necessary to approximate a pure delay link with a minimum phase link in order to ensure the possibility of using analytical methods for regulator design. There are many approximation methods based on the Taylor series expansion, as well as modified methods. The most famous one is the Padé approximation method. The known approximation methods have significant drawbacks, which this paper reveals. However, there are other methods of forming other types of filters that can serve as a better approximation in determining the delay relationship, although they are not used for these purposes. In particular, methods of forming the desired differential equation of a locked-loop system of a given order by the method of numerical optimization are known. In this case, the locked-loop system behaves like a filter of the corresponding order, the numerator of which is equal to one, and the specified polynomial is in the denominator. Modeling has shown that such a filter is an effective alternative approximation of the delay link and can be used for the same purposes for which it was supposed to use the Padé approximation. The polynomial coefficients in the literature were calculated only up to the 12th order. The higher the polynomial order is, the more accurate the approximation is.

Publisher

SPIIRAS

Subject

Artificial Intelligence,Applied Mathematics,Computational Theory and Mathematics,Computational Mathematics,Computer Networks and Communications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tuning a PID Controller in a System with a Delayed Second-Order Object;Optoelectronics, Instrumentation and Data Processing;2022-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3