Numerical homogenization of the gas filtration problem

Author:

,Kachalin N,Spiridonov D

Abstract

The non-stationary gas flow equation in homogeneous and heterogeneous media is considered. Areas of this type are often encountered when considering gas production processes from a gas-bearing reservoir. The heterogeneous structure of the reservoir can strongly affect the extraction processes. For the numerical solution of the problem under consideration, we construct an approximation of the equations on a coarse grid using the numerical averaging method. The method allows us to solve the problem using less computational power and in a shorter time. A numerical comparison of the results of solving the model problem is carried out in a two-dimensional domain for the cases of linear and nonlinear variants of the equations, as well as in a homogeneous and heterogeneous medium. The finite element solution on a fine mesh was taken as a reference solution. The computational realization was performed using the FEniCS library. The construction of the geometric computational domain was performed in the program Gmsh. Paraview and the Matplotlib library in Python were used for data visualization.

Publisher

L. N. Gumilyov Eurasian National University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3