Modelling Heat Transfer in Solar Distiller with Additional Condenser Studying

Author:

Ibraheem Nagham T.,Hussain Hazim H.,Khaleed Omar L.

Abstract

The sun is the main source of energy that reaches the surface of the earth in the form of electromagnetic radiation called solar radiation and when it reaches the outer surface of the glass hood of the solar distillation, the process of energy transferring as the heat begins. the energy transfer process between parts of solar distillates greatly controls its performance, so the greater amount of energy gained and the less energy lost, leads to higher productivity and efficiency of the solar distillery. in this paper, a mathematical model was constructed to calculate the amount of thermal energy in each part of a monoclinic solar distiller equipped with an additional capacitor during its operation. as a result of this model showed that the temperature, after a series of heat energy exchanges between the glass cover and all the internal parts of the distillate, with the absorbent part at the base of the distillate, exhibited the same behavior, which is increasing in its temperature steadily during the first hours of the day from (32.5-41.7 ) at (08:30 am) in the morning down to its top value (61.4-76.7 ) at (02:30 pm) and decline after this hour in the same bullish pattern. this is due to the greater difference between the amount of energy lost and acquired by the absorbent portion during the same daylight hours, as the amount of energy gained increases and the amount of lost energy decreases, leading to the highest energy gain and the least energy lost by the absorbent part at (02:30 pm), except the outer part of the additional condenser, which followed a similar behavior of air temperature, with its temperature gradually increasing slightly during the first hours of the day from (27 ) at (08:30 am) until it reached its peak (36.2 ) at (01:30 pm), then it decreases after this time slightly. this slight rise and slight decrease are due to the constant state of thermal balance between the two ends of the additional condenser by the heat exchange process between the outer part of the additional condenser and the cooling water.

Publisher

Al-Mustansiriyah Journal of Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3