Aerosol-Assisted Chemical Vapor Deposition (AACVD) Technique of SrTiO3: B Thin Films and Study the Structural and Optical Properties and Hall Effect Measurements

Author:

Abdul-Hussein Yahya M.,Hussain Randa K.ORCID,Khalaf Mohammed K.ORCID

Abstract

Aerosol-assisted chemical vapor deposition (AACVD) technique is very precise implemented to fabrication of structured SrTiO3 and Sr1-xBxTiO3 thin films at doping ratio (x = 2, 4, 6 and 8) % at temperature 400 °C on a glass substrate. The X-Ray Diffraction (XRD) patterns illustrated that the SrTiO3 and Sr1-xBxTiO3 thin films have a polycrystalline nature and cubic structure, the detailed characterization of the films by X-ray diffraction (XRD), the Surface Morphology studied by using (AFM) and (SEM). Have been noticed from AFM measurement the Roughness and RMS were increased with increases doping ratio. The optical properties of SrTiO3 and Sr1-xBxTiO3 thin films have been studied at doping ratio (x = 2, 4, 6 and 8) % at rate (300-900) nm. The transmittance spectrum is characterized by the opposite behavior of the absorbance spectrum. The transmittance generally increases with the increase in the wavelength of radiation, at wavelengths with low energies while the absorbance decreased slowly at spectrum rate (300-900) nm i.e. in the visible region. The band gap (Eg) is decreased at (3.2 - 2.5) eV which indicates that the doping process has led to the emergence of localized levels in the region confined by the valence and conduction bands, led to a reduction in the photon energy required for direct electronic transitions to occur. Found the carriers concentration charge are holes of Sr1-xBxTiO3 thin films at doping ratio (x = 2, 4, 6 and 8) %. Many properties can be improved by adding impurities such as Boron (B) to the SrTiO3, which can be used in solar cells, electronic industries or thermoelectric generators by controlling the optical or structural properties of the material by controlling the materials and percentages of impurity, or through heat treatment of the material, such as annealing, for example or exposure to different temperatures.

Publisher

Al-Mustansiriyah Journal of Science

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3