Tuning TiO2 Porosity of Multilayered Photoanode Towards Enhanced Performance of Dye Sensitized Solar Cell

Author:

Jabbar HashimORCID,Abdullah Basil A.ORCID,Ahmad Noor

Abstract

In this paper, we prepared Titanium Dioxide (TiO2) based dye sensitized solar cells (DSSC). Downscaling of commercial TiO2 powder have been achieved by systematic ball milling carried out using home-made ball milling device. Thin films were prepared and samples were characterized by XRD, SEM, UV-Vis and I-V. The main objective of this work is to prepare TiO2 based (DSSC) using N3 dye and study the effect of the TiO2 grain size inside the photoanode layer on the efficiency of the solar cell. UV-vis study of nanometer sized TiO2 particles showed that the energy gab has shifted towards the lower wavelength in electromagnetic spectrum (blue shift), and then optical band gap is an indirect and allowed transition. Energy gap calculations of related grain size of showed quantum confinement effect. A sophisticated strategy for TiO2 films consisting of tailoring monolayer, bilayer and trilayer of mixed multisized nanoparticles were adopted and investigated as DSSC electrodes. Our results showed that the dye sensitized solar cells can be substantially altered due to the designs and the particle size distributions of the TiO2 photoelectrode. The maximum efficiency of 0.5% was reached by TiO2 photoelectrode designed as a trilayer with a particles of wide size distribution from about 12 to 340 nm in the middle layer. The approach of light scattering in submicrometer‐sized TiO2 nanoparticles aggregates was adopted in order to interpret the enhancement of our DSSC efficiency over extending the length transported by electromagnetic wave hence to promote the light acquiring efficiency of photoelectrode thin film. The relatively larger particle sizes afford the TiO2 films with both better packing and an increased capability for scattering of the incident electromagnetic wave, and hence improves our DSSC efficiency.

Publisher

Al-Mustansiriyah Journal of Science

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3