Estimation of Global Solar Radiation Using NNARX Neural Networks Based on the UV Index

Author:

Barco Jiménez JohnORCID,Eraso Checa FranciscoORCID,Pantoja AndrésORCID,Caicedo Bravo EduardoORCID

Abstract

Context: This work presents different models based on artificial neural networks, among them NNARX, for estimating global solar radiation from UV index measurements. The objective is to determine the efficiency of the models studied to estimate global solar radiation in terms of the coefficient of determination (R2), the root-mean-square error (RMSE), and the mean absolute error (MAE). Methodology: It is divided into four stages: i) conformation of the training dataset (in this case, it uses a training set of 213.019 data collected over five years in the city of Pasto, Colombia, with the Davis Vantage Pro 2.0 station); ii) pre-processing of data to remove erroneous and unusual data; iii) definition of models based on recurrent and conventional artificial neural networks according to an analysis of topologies, e.g. NNFIR and NNARX; iv) training of the models and evaluation of the estimation efficiency through metrics such as R2, RMSE, and MAE. To validate the model, a new dataset collected during the last year was used, which was not included in the data training. Results: The global solar radiation estimation models based on NNARX show the best estimation efficiency compared to conventional neural networks. The NNARX221 model has an RMSE of 54,32 and a MAE of 18,06 w/m2. Conclusions: NNARX models are highly efficient at estimating global solar radiation, with a coefficient of determination of 0,9697 in the best of cases. The most efficient models are characterized by using two past times and the current UV index instant, and they feed from two past times of their own estimated radiation output. Furthermore, the numerical results show that the contribution of temperature and relative humidity is not relevant to improving the efficiency of the estimation of global solar radiation. These models can be particularly important since they only use measurements made with UV index sensors, which are less expensive than solar radiation ones.

Publisher

Universidad Distrital Francisco Jose de Caldas

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3