Abstract
Contexto: Los vehículos aéreos no tripulados (UAV, por sus siglas en inglés) han tomado gran relevancia en los últimos años, al integrarse en diversos sectores de la economía, como el agrícola, energético, público, construcción, entre otros. Precisamente, en este último sector, se han venido realizando avances que permiten la manipulación, transporte e identificación de elementos propios del sector, así como la cooperación entre distintos robots aéreos o robots terrestres para solucionar el problema de límite de carga, asociado a los UAV.
Método: Este trabajo está dividido en cuatro categorías en las que los UAV y los sistemas aéreos no tripulados (UAS, por su sigla en inglés) han aportado al desarrollo de actividades de construcción de forma autónoma. Se realiza una búsqueda exhaustiva mediante Google Scholar empleando palabras claves tales como “UAV”, “robotics”, “UAS”, “construction”, “cooperation”, “architecture” y “assembly”, las cuales permiten identificar trabajos desarrollados en este campo. En la búsqueda se realiza combinaciones entre las distintas palabras con el fin de reducir el amplio panorama que se presenta al utilizar tan solo una de ellas.
Resultados: Se obtiene un panorama de diversos sistemas aéreos no tripulados que ejecutan tareas simples que conlleven la automatización del sector de la construcción; en ese sentido, se enumeran las características, virtudes y limitantes actuales de estos sistemas, así como, los desafíos que se proponen a futuro.
Conclusiones: El mercado actual de UAV está orientado principalmente a sistemas teleoperados; sin embargo, centros de investigación han venido desarrollando UAV y UAS más autónomos. La baja capacidad de carga de estos sistemas ha sido compensada con la cooperación entre robots aéreos, terrestres e, inclusive, humanos. Dicha cooperación exige la creación de algoritmos que coordinen todos los agentes que intervienen en el sistema. Se deben tener en cuenta las condiciones del entorno de construcción, así como, la precisión y estabilidad de estos sistemas.
Publisher
Universidad Distrital Francisco Jose de Caldas
Reference48 articles.
1. Agarwal, R., Chandrasekaran, S. y Sridhar, M. (2016). Imagining construction’s digital future. McKinsey & Company. https://www.mckinsey.com/business-functions/operations/our-insights/imagining-constructions-digital-future#.
2. Asadi, K., Suresh, A., Ender, A., Gotad, S., Maniyar, S., Anand, S., Noghabaei, M., Han, K., Lobaton, E. y Wu, T. (2020). An integrated UGV-UAV system for construction site data collection. Automation in Construction, 112, 103068. https://doi.org/10.1016/j.autcon.2019.103068.
3. Augugliaro, F., Zarfati, E., Mirjan, A. y D'Andrea, R. (2015). Knot-tying with flying machines for aerial construction. En 2015 IEEE/RSJ International Conference on
4. Intelligent Robots and Systems (IROS) (pp. 5917-5922). https://doi.org/10.1109/IROS.2015.7354218.
5. Augugliaro, F., Mirjan, A., Gramazio, F., Kohler, M. y D'Andrea, R. (2013). Building tensile structures with flying machines. En 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 3487-3492). https://doi.org/10.1109/IROS.2013.6696853.