Human Activity Recognition via Feature Extraction and Artificial Intelligence Techniques: A Review

Author:

Eraso Guerrero José CamiloORCID,Muñoz España ElenaORCID,Muñoz Añasco MarielaORCID

Abstract

Context: In recent years, the recognition of human activities has become an area of constant exploration in different fields. This article presents a literature review focused on the different types of human activities and information acquisition devices for the recognition of activities. It also delves into elderly fall detection via computer vision using feature extraction methods and artificial intelligence techniques. Methodology: This manuscript was elaborated following the criteria of the document review and analysis methodology (RAD), dividing the research process into the heuristics and hermeneutics of the information sources. Finally, 102 research works were referenced, which made it possible to provide information on current state of the recognition of human activities. Results: The analysis of the proposed techniques for the recognition of human activities shows the importance of efficient fall detection. Although it is true that, at present, positive results are obtained with the techniques described in this article, their study environments are controlled, which does not contribute to the real advancement of research. Conclusions: It would be of great impact to present the results of studies in environments similar to reality, which is why it is essential to focus research on the development of databases with real falls of adults or in uncontrolled environments.

Publisher

Universidad Distrital Francisco Jose de Caldas

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A State-Based Language for Enhanced Video Surveillance Modeling (SEL);Modelling;2024-05-24

2. Exploring Classifier Selection for Human Activity Recognition Using Machine Learning Approach;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3