Estimación de fugas en tuberías a presión para sistemas de agua potable mediante redes neuronales artificiales y Epanet

Author:

Ladino-Moreno Edgar-Orlando,García-Ubaque César-AugustoORCID,García-Vaca María-Camila

Abstract

Este trabajo trata de la estimación de una fuga para un sistema de tubería principal sin ramificaciones. Se propone un algoritmo y una red neuronal con cuatro variables de entrada, una capa oculta con 25 neuronas y tres variables de salida. La obtención de los datos se realizó mediante un bucle anidado en Visual Basic (Excel®) estableciendo 35.837 escenarios de fuga para una tubería de 30 m que conduce agua con viscosidad cinemática de 0,000001 (m2/s), un diámetro igual a 0,15222 m, rugosidad de 0,0000015 m, pérdida de carga de 3,5 m y dos accesorios (k1, k2) que suma 1,5. Se instalaron en el sistema hidráulico dos caudalímetros y dos manómetros virtuales al inicio y al final de la tubería. Asimismo, se utiliza Epanet® e Hydroflo® (Tahoe Design Software) para estructurar el modelo hidráulico y validar los datos iniciales. Se utilizó MatLab R2021a para analizar los algoritmos de aprendizaje de retropropagación y regularización bayesiana, adoptando la función de transferencia log sigmoide. Como función de control se implementó el error medio cuadrático y el coeficiente de determinación R2. El modelo neuronal obtenido presentó un error medio cuadrático de 1,44E-06 y un error relativo igual a 0,0055 % para los datos de entrenamiento. La validación cruzada de la red neuronal se realizó a partir de 5.973 datos de entrada independientes.

Publisher

Universidad Distrital Francisco Jose de Caldas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3