The Validity of a Portable Strain-Gauge Apparatus Versus a Commercial Isokinetic Dynamometer for Evaluating Knee Extension Kinetics

Author:

Oranchuk Dustin1,Juneau Chris2,Diewald Shelley2,Neville Jono2,Cronin John2

Affiliation:

1. University of Colorado Anschutz Medical Campus

2. Auckland University of Technology

Abstract

Background Isokinetic dynamometers are widely used when assessing neuromuscular function including knee extension kinetics. However, these dynamometers are often prohibitively expensive and are not portable. Thus strain-gauge technology has grown in popularity. Purpose The purpose of this study was to compare kinetic data captured via an isokinetic dynamometer against an affordable and portable strain-gauge with a treatment plinth during maximal isometric knee extensions. Study Design Cross-sectional study. Methods Healthy participants (8 males and 6 females; age 30.2±7.1 years) volunteered and performed knee extensions at a 90° knee angle on a dynamometer and a treatment plinth with a portable strain-gauge. Peak force (PF), peak rate of force development (PRFD), rate of force development (RFD2080) and impulse (IMP2080) from 20-80% of onset to peak force were assessed using both strain-gauge and isokinetic dynamometer. Between-device differences were evaluated by the Wilcoxon signed-rank test, Cohen’s d effect sizes (ES), Pearson’s correlation coefficients (r), and Bland-Altman plots. Results No significant or meaningful differences were identified between isokinetic and strain-gauge devices (all p≥0.268, ES≤0.35). However, slightly greater (2.5-9.5%) outputs were observed with the isokinetic dynamometer. Very large significant between-device correlations were found for PF (r=0.77, p=0.001) and PRFD (r=0.73, p=0.003), while small and moderate non-significant between-device correlations were found for RFD2080 (r=0.48, p=0.079) and IMP2080 (r=0.59, p=0.060). Bland-Altman plots did not reveal apparent biases from high to low performers. Conclusions These results indicate that the strain-gauge device can produce valid maximal and rapid force expression measurements. Similar results, such as those quantified via an isokinetic device, can be obtained without extreme rigour and constraint. The study’s findings support using the practically relevant treatment plinth and strain-gauge combination as a suitable alternative to the isokinetic dynamometry for measuring PF and PRFD. Therefore, more rehabilitation and sports performance practitioners can confidently assess knee extension kinetics. Level of Evidence 3

Publisher

International Journal of Sports Physical Therapy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3