An Empirical Comparison of Machine Learning Models for Student’s Mental Health Illness Assessment

Author:

Muzumdar Prathamesh,Basyal Ganga Prasad,Vyas Piyush

Abstract

Student’s mental health problems have been explored previously in higher education literature in various contexts including empirical work involving quantitative and qualitative methods. Nevertheless, comparatively few research could be found, aiming for computational methods that learn information directly from data without relying on set parameters for a predetermined equation as an analytical method. This study aims to investigate the performance of Machine learning (ML) models used in higher education. ML models considered are Naïve Bayes, Support Vector Machine, K-Nearest Neighbor, Logistic Regression, Stochastic Gradient Descent, Decision Tree, Random Forest, XGBoost (Extreme Gradient Boosting Decision Tree), and NGBoost (Natural) algorithm. Considering the factors of mental health illness among students, we follow three phases of data processing: segmentation, feature extraction, and classification. We evaluate these ML models against classification performance metrics such as accuracy, precision, recall, F1 score, and predicted run time. The empirical analysis includes two contributions: 1. It examines the performance of various ML models on a survey-based educational dataset, inferring a significant classification performance by a tree-based XGBoost algorithm; 2. It explores the feature importance [variables] from the datasets to infer the significant importance of social support, learning environment, and childhood adversities on a student’s mental health illness.

Publisher

Asian Online Journals

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Support Vector Machine for Satellite Images Classification Using Radial Basis Function Kernel Method;Communications in Computer and Information Science;2024

2. College Student Mental Health Analysis Based on Machine Learning Algorithm;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

3. Evaluation of the Prediction Algorithms for the Diagnosis of Hepatic Dysfunction;Nevşehir Bilim ve Teknoloji Dergisi;2023-12-31

4. K-Means Clustering of the Mental Health of Engineering Students at the Universitas Islam Lamongan;2023 IEEE International Conference on Communication, Networks and Satellite (COMNETSAT);2023-11-23

5. Lifestyle, Demographic and Socio-Economic Determinants of Mental Health Disorders of Employees in the European Countries;International Journal of Environmental Research and Public Health;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3