Investigation of the electromagnetic properties of a transverse insert based on a planar layer of a chiral metamaterial in a rectangular waveguide

Author:

Buchnev Ivan Yu.,Osipov Oleg V.

Abstract

The paper considers the solution of the problem of diffraction of the fundamental wave of a rectangular waveguide H10 on a planar transverse insert based on a chiral metamaterial created on the thin-wire conducting helices. To describe the chiral layer, a particular mathematical model is constructed that takes into account the properties of heterogeneity and dispersion of the permittivity and the chirality parameter of the artificial media. The well-known in physics model of Maxwell Garnett was used to take into account the heterogeneity property. To take into account the permittivity dispersion the DrudeLorentz formula was applied and for the chirality parameter was used the Condon formula. The problem of diffraction of the rectangular waveguide main wave on a planar layer of a chiral metamaterial was solved by the partial regions method and was reduced to a system of linear algebraic equations for unknown reflection and transmission coefficients. It is shown that in the presence of a transverse chiral layer in the waveguide structure, a wave of the H01 type cross-polarized with respect to the main one arises. An analysis of the frequency dependences of the moduli of the reflection and transmission coefficients of the fundamental H10 and cross-polarized H01 showed that in some narrow frequency intervals in the single-mode gap, situations arise when the fundamental wave type is replaced from H10 to H01 near resonant frequencies. The transmission line under consideration can find application in the creation of frequency selective filters and polarization converters in the microwave range.

Publisher

Povolzhskiy State University of Telecommunications and Informatics

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3