COMPLEX-SHAPED PARTS GRINDING TECHNOLOGY INFORMATION ENSURING

Author:

Lishchenko Natalia V.,Larshin Vasily Petrovich

Abstract

A method of computer-aided design and manufacture of complex-shaped parts of machines and implants from difficult-tomachine materials (titanium, cobalt-chromium alloys, zirconium dioxide, etc.) has been developed, based on the principles of building an integrated CAD/CAM/CAE system of computer-aided designing and a hierarchical intelligent numerical control system. It is shown that kinematical mechanisms created over the past several centuries do not allow reproducing with the required accuracy the joints movement of living organisms for their use in biomedical implantation technologies. Therefore, the worn out joints of living organisms are reconstructed by adding complex-shaped parts from these difficult-to-machine materials. Information about the geometric shape of these parts (3D model) at the pre-production stage is obtained using modern methods of computed tomography and magnetic resonance imaging, and at the production stage the actual location of the stock grinding allowance is measured by laser (or tactile) scanning. To reduce the unevenness of the position of the grinding stock allowance, the workpiece of a complex-shaped part before grinding is oriented in the coordinate system of a CNC machine based on the established criterion for minimizing the allowance. An example of such orientation of the gear workpiece is given. This workpiece is measured with a Renishaw tactile probe on the left and right sides of the gear valleys before gear grinding. Both the minimum allowance on the left and right sides of the valleys and the difference between them are determined, and then additionally the gear wheel blank is rotated in the appropriate direction to align these minimum values detected. In turn, the aligned minimum allowances, should be sufficient to compensate for the influence of technological factors from the previous operation and the error in setting the workpiece for this operation. For complex-shaped implants, such an additional orientation is performed, for example, according to algorithms for ensuring the minimax value of the allowance.

Publisher

Odessa Polytechnic State University

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex-Shaped Parts Grinding Allowance Tactile Measurement;Lecture Notes in Mechanical Engineering;2022

2. Modeling of the Intermittent Grinding Temperature;Lecture Notes in Mechanical Engineering;2021-11-18

3. Gear Grinding Stock Alignment in Advance of Grinding;Lecture Notes in Mechanical Engineering;2021-11-18

4. Intelligent Numerical Control of Profile Grinding;Lecture Notes in Mechanical Engineering;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3