COMPARISON OF MODEL ACCURACY IN TREE CANOPY DENSITY ESTIMATION USING SINGLE BAND, VEGETATION INDICES AND FOREST CANOPY DENSITY (FCD) BASED ON LANDSAT-8 IMAGERY (CASE STUDY: PEAT SWAMP FOREST IN RIAU PROVINCE)

Author:

Ashaari Faisal,Kamal Muhammad,Dirgahayu Dede

Abstract

Identification of a tree canopy density information may use remote sensing data such as Landsat-8 imagery. Remote sensing technology such as digital image processing methods could be used to estimate the tree canopy density. The purpose of this research was to compare the results of accuracy of each method for estimating the tree canopy density and determine the best method for mapping the tree canopy density at the site of research. The methods used in the estimation of the tree canopy density are Single band (green, red, and near-infrared band), vegetation indices (NDVI, SAVI, and MSARVI), and Forest Canopy Density (FCD) model. The test results showed that the accuracy of each method: green 73.66%, red 75.63%, near-infrared 75.26%, NDVI 79.42%, SAVI 82.01%, MSARVI 82.65%, and FCD model 81.27%. Comparison of the accuracy results from the seventh methods indicated that MSARVI is the best method to estimate tree canopy density based on Landsat-8 at the site of research. Estimation tree canopy density with MSARVI method showed that the canopy density at the site of research predominantly 60-70% which spread evenly.

Publisher

Indonesian National Institute of Aeronautics and Space (LAPAN)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Thermal index effect in forest canopy density (FCD) methods based on remote sensing imagery;Eighth Geoinformation Science Symposium 2023: Geoinformation Science for Sustainable Planet;2024-01-29

2. Assessment of the success of canopy cover revegetation of former coal mine lands with Forest Canopy Density (FCD) Model in Kutai Kartanegara, East Kalimantan;Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management);2023-12-03

3. Comparison between biophysical analysis model and dimidiate pixel model for the estimation of forest canopy density;Journal of Applied Remote Sensing;2023-03-13

4. The current status, potential and challenges of remote sensing for large-scale mangrove studies;International Journal of Remote Sensing;2022-09-17

5. A Study of Individual Human Mobility Patterns Related to Malaria Transmission Along the Thai-Myanmar Border;Proceedings of the 4th International Conference on Medical and Health Informatics;2020-08-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3