Affiliation:
1. Department of Mechanical Engineering,Kathmandu University,Nepal
Abstract
Food waste is one of the major problems contributing to the degradation of the environment, and thus needs serious attention. Among different options, anaerobic digestion is possibly the most effective technique for managing degradable waste, and produce renewable energy and fertilizer. Despite multiple-use and benefits of the technology, its application is limited due to a few technical challenges. This study focuses on the anaerobic digestion of food waste with the addition of different percentages of digested cow manure as inoculum to it, at different total solid content in ambient temperature. Anaerobic digestion of food waste in batch and semi-continuous processes were carried out in three different trials at an average temperature range of 20-26℃: Food waste with 20% inoculum, food waste with 50%, 100%, and 200% inoculum and 10% total solid content in batch process and food waste with 20% inoculum with 6% and 10% total solids content in the semi-continuous process. During each trial, some amount of gas production was observed, however, the gas composition showed a negligible amount of methane production (maximum 13% of CH4). There were two common problems detected in each trial: the inability to complete the methanogenesis process, and instability of the overall process due to the high degradability and acidic nature of food waste. Therefore, this study suggests that the mono digestion of food waste is not a suitable option. However, anaerobic co-digestion of food waste with different organic substrate might provide a favorable condition for stable anaerobic digestion as seen from preliminary results.
Subject
Waste Management and Disposal,Environmental Chemistry,Environmental Engineering
Reference29 articles.
1. AEPC, Urban Domestic Biogas, Altern. Energy Promot. Cent. (2013). https://www.aepc.gov.np/urban-domestic-biogas (accessed September 9, 2019)
2. APHA. (2005). Standard Methods for the Examination of Water and Wastewater. In American Public Health Association. Washington,DC
3. Trace element requirements for stable food waste digestion at elevated ammonia concentrations
4. Effect of inoculum to substrate ratio (I/S) on municipal solid waste anaerobic degradation kinetics and potential
5. Capson-Tojo, G, Rouez, M., Crest, M., Trably, E., Steyer, J.-P., Delgenès, J.-P., & Escudié, R. (2017). Optimization of urban food waste valorization : cardboard as suitable co-substrate for dry anaerobic co-digestion. The 15th World Congress on Anaerobic Digestion, (October)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献