SILVER RECOVERY FROM END-OF-LIFE PHOTOVOLTAIC PANELS

Author:

Oliveira Larisse Suzy Silva de1,Lima Maria Tereza Weitzel Dias Carneiro2,Yamane Luciana3,Siman Renato Ribeiro4ORCID

Affiliation:

1. Department of Environmental Engineering,Federal University of Espírito Santo,Brazil

2. Department of Chemistry,Federal University of Espírito Santo,Brazil

3. Department of Environmental Engineer ,Federal University of Espírito Santo,Brazil

4. Department of Environmental Engineering,Federal University of Espirito Santo,Brazil

Abstract

The growth of the photovoltaic sector has stood out among renewable sources of energy, due to technological innovations that have brought about cost reductions. Thus, this paper aimed to analyze the technical feasibility of silver recovery from photovoltaic cells using acid leaching, followed by an evaluation of the chemical and electrochemical precipitation processes to analyze their efficiencies. As a primary objective of this work, the gravimetric composition and the metal concentration (Ag, Al, Pb, Cu, and Fe) in the photovoltaic cells were first determined, developing the basis for future research on photovoltaic panels recycling Subsequently, the influence of HNO3 concentration (1-10 mol/L), temperature (25-60ºC), and reaction time were evaluated. A new research application used a statistical tool, the Central Composite Rotational Design (CCRD), as well as samples of different brands and models of photovoltaic panels, in order to ensure the experimental validity. As a highlight, the analysis of the composition of the photovoltaic cells, applying the HNO2CO3, as well as electroprecipitation, made it possible to extract more than 99% of silver in solution, being a primary novelty of this study. Therefore, the studied pathway allowed for the recovery of 99.98% of the silver present in the photovoltaic cells.

Publisher

Eurowaste SRL

Subject

Waste Management and Disposal,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3