Two-stage alkaline and acid pretreatment applied to sugarcane bagasse to enrich the cellulosic fraction and improve enzymatic digestibility

Author:

Igbojionu Longinus Ifeanyi1ORCID,Laluce Cecilia1,Pecoraro Edison2

Affiliation:

1. Institute of Research in Bioenergy (IPBEN),São Paulo State University (UNESP),Brazil

2. Department of General and Inorganic Chemistry,São Paulo State University (UNESP),Brazil

Abstract

Sugarcane bagasse (SB) is made up of cellulose (32-43%), hemicellulose (19-34%) and lignin (14-30%). Due to high recalcitrant nature of SB, pretreatment is required to deconstruct its structure and enrich the cellulosic fraction. A two-stage NaOH and maleic acid pretreatment was applied to SB to enrich its cellulosic fraction. SB used in the present study is composed of cellulose (40.4 wt%), hemicellulose (20.9 wt%), lignin (22.5 wt%) and ash (4.0 wt%). After one-stage NaOH pretreatment, its cellulosic fraction increased to 61.8 wt% and later increased to 80.1 wt% after the second-stage acid pretreatment. Lignin fraction decreased to 3.0 wt% after one-stage NaOH pretreatment and remained unaffected after the acid pretreatment step. Hemicellulose fraction decreased substantially after the second-stage pretreatment with maleic acid. Pretreated SB displayed high crystallinity index and improved enzymatic digestibility. Hydrolysates of pretreated SB contained very low amount of xylose and subsequent fermentation by Saccharomyces cerevisiae -IQAr/45-1 resulted to ethanol level of 8.94 g/L. Maximal ethanol yield of 0.49 g/g (95.8% of theoretical yield) and productivity of 0.28 g/L/h was attained. At the same time, biomass yield and productivity of 0.47 g/g and 0.27 g/L/h respectively were obtained. Two-stage NaOH and maleic acid pretreatment led to ~ two-fold increase in cellulosic fraction and enhanced the enzymatic digestibility of SB up to 70.4%. The resulted enzymatic hydrolysate was efficiently utilized by S. cerevisiae -IQAr/45-1 to produce high yield of ethanol. Thus, optimization of enzymatic hydrolysis at low enzyme loading is expected to further improve the process and reduce cost.

Publisher

Eurowaste SRL

Subject

Waste Management and Disposal,Environmental Chemistry,Environmental Engineering

Reference50 articles.

1. Evaluation of chlorine dioxide as a supplementary pretreatment reagent for lignocellulosic biomass

2. Enzymatic hydrolysis of biomass from wood

3. Recent Trends in the Pretreatment of Lignocellulosic Biomass for Value-Added Products

4. Short duration microwave assisted pretreatment enhances the enzymatic saccharification and fermentable sugar yield from sugarcane bagasse

5. Brienzo, M., Carvalho, A. F. A., de Figueiredo, F. C., de Oliva Neto, P. 2016. Sugarcane bagasse hemicellulose properties, extraction technologies and xylooligosaccharides production. Food waste: Practices, management and challenges, 155-188

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3