Microplastics identification in landfill leachates by different spectroscopic techniques

Author:

Simongini Camilla1,Pucetaite Milda2,Serranti Silvia3,van Praagh Martijn4,Hammer Edith2,Bonifazi Giuseppe1

Affiliation:

1. Department of Chemical Engineering, Materials & Environment (DICMA),University of Rome La Sapienza,Italy

2. Department of Biology,Lund University,Sweden

3. Department of Chemical Engineering, Materials and Environment (DICMA),University of Rome La Sapienza,Italy

4. Centre for enivornmental and climate science,Lund University,Sweden

Abstract

Discovered more than 40 years ago, microplastics have become a major environmental issue. With increasing global plastic production, microplastics are of growing concern. Landfills have been pinpointed as primary sources of microplastics to surface waters and they have, in fact, been identified and quantified as such. Due to their small size, different polymers and interfering non-plastic materials, microplastics are difficult to analyse in a complex matrix such as leachate. To elucidate the impact of pre-treatment on the performance of the most common microspectroscopical analytical methods employed, i.e., FT-IR and Raman, we re-examined previously pre-treated and analysed leachate samples. Additionally, we subjected duplicates of previously analysed samples to different concentrations of H2O2 with varied reaction times to digest and remove non-plastic organic matter. The pre-treated samples were subjected density separation and (re-)analysed by means of FT-IR and Raman microspectroscopy. Larger particles were also analysed by near-infrared (NIR) hyperspectral imaging. We found the concentration of H2O2 to impact the possibility of identifying and quantifying PET particles, with Raman scattering microspectroscopy enabling more particles to be counted than with FT-IR. This is likely due to the increased detectable particle size range, from around 50 μm for FT-IR to 1 μm for Raman scattering microspectroscopy. Optimized H2O2 concentration with subsequent density separation enabled to clearly identify numerous PE particles, but also PP, PS, and PET particles and carbon compounds with Raman scattering microspectroscopy. Hyperspectral imaging performed well for particles larger than 30 μm.

Publisher

Eurowaste SRL

Subject

Waste Management and Disposal,Environmental Chemistry,Environmental Engineering

Reference31 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3