NEAR-INFRARED IDENTIFICATION AND SORTING OF POLYLACTIC ACID

Author:

Mhaddolkar Namrata1ORCID,Koinig Gerald1,Vollprecht Daniel2ORCID

Affiliation:

1. Waste Processing Technology and Waste Management (AVAW),Montanuniversitat Leoben,Austria

2. Waste Processing Technology and Waste Management (AVAW),Montanuniversität Leoben,Austria

Abstract

Biobased plastics are often seen to be an environmentally friendly alternative to conventional plastics, with their share, though being less now, is gradually increasing. This necessitates that the waste management of these possibly eco-friendly materials is also at par with their growth. Near-infrared (NIR) sorting is an effective waste sorting technology and is already widely used for conventional plastics. Thus, it would be imperative to analyse whether this effective existing infrastructure could also be successfully used to sort bioplastic. In the present study, the lab-scale NIR sensor-based sorting system in Montanuniversität Leoben was used to analyse polylactic acid (PLA) in three sets of experiments. First, the spectra of 7 conventional plastics were compared to that of virgin PLA and it was found that PLA has a distinct spectrum and should ideally be detected from a mixed plastic fraction. Second, it was assessed whether different grades and thicknesses of virgin PLA samples produced different spectra and it was found that there is a slight difference in the intensities without any wavelength shift of the recognizable peaks. Lastly, the detection of 10 PLA product samples was tested using the NIR recipe of a virgin PLA. It was observed that the samples were successfully detected and blown out as PLA for all the conducted trials. Additionally, it was also seen that an appropriate backlight setting is important to be able to correctly sort the transparent PLA products in the used chute-type sorter.

Publisher

Eurowaste SRL

Subject

Waste Management and Disposal,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3