EFFECT OF SOLIDS CONCENTRATION AND SUBSTRATE TO INOCULUM RATIO ON METHANE PRODUCTION FROM ORGANIC MUNICIPAL SOLID WASTE

Author:

Castellón-Zelaya Mario F.1ORCID,González-Martínez Simón1

Affiliation:

1. Environmental Engineering Department, Institute of Engineering,National Autonomous University of Mexico,Mexico

Abstract

Organic Fraction of Municipal Solid Waste (OFMSW) is usually stored under variable humidity conditions and long periods before processing them in anaerobic digestion plants. Lately, the fermented OFMSW is mixed with recirculated digestate from the same biogas plants, which is used as methanogenic inoculum. Although both the moisture content during the storage of OFMSW and the inoculum concentration in the feed mixture to the anaerobic reactors are determining factors for the process, to our knowledge, no studies have been done about the combined effect of these operational parameters on methane production. Therefore, this study focused on determining how humidity conditions during OFMSW storage and the substrate to inoculum ratio (S/I) in the methanisation stage can be adjusted to improve methane production. OFMSW was stored at 35°C and 10, 20, and 28%TS for 15 days. In the second stage, methanisation of previously fermented OFMSW was allowed at different S/I ratios of 0.5, 1.0, and 1.5. Ethanol and acetic acid accounted for 90% of all products of fermentation. The lowest solids concentration reached the highest fermentation degree. Compared to fresh OFMSW (without storing), methane from fermented OFMSW increased 32% and, the times to reach the maximum methane production decreased between 11 and 40%. For fermented OFMSW, S/I ratio of 1.0 is the best condition to produce methane. ANOVA shows that, independently of solid concentration during storage, the S/I ratio is the main parameter improving methane production and reducing reaction times.

Publisher

Eurowaste SRL

Subject

Waste Management and Disposal,Environmental Chemistry,Environmental Engineering

Reference55 articles.

1. Total solids content drives high solid anaerobic digestion via mass transfer limitation

2. Al Seadi, T., Rutz, D., Prassl, H., Köttner, M., Finsterwalder, T., Volk, S. and Janssen, R., 2008. Biogas Handbook. University of Southern Denmark. Esbjerg, Denmark

3. APHA, 2017. Standard methods for the examination of water and wastewater, 23rd edition. American Public Health Association, Washington, D. C

4. ASTM D5231-92, 2016. Standard Test Method for Determination of the Composition of Unprocessed Municipal Solid Waste, ASTM International, West Conshohocken, PA

5. Anaerobic Fermentation of Organic Municipal Solid Wastes for the Production of Soluble Organic Compounds

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3