Electronic Waste Treatment Flows in Norway: Investigating recycling rates and embodied emissions

Author:

Mattson Kim Rainer1,Lindgreen Lauritsen Lærke1,Berg Pettersen Johan1

Affiliation:

1. Industrial Ecology Program, Department of Energy and Process Engineering,Norwegian University of Science and Technology,Norway

Abstract

Norway is one of the countries in Europe generating the most waste from electrical and electronic equipment (WEEE) per capita. Extended producer responsibility schemes are incorporated as part of the national waste policy, with clear goals towards recovery of materials from the waste fraction. Investigating the WEEE flows in Norway, we observe clear improvements needed in the transparency of the sector, and based on the information gathered, we estimate lower recycling of materials than provided through official statistics based on reporting. 68% of WEEE sent to recycling treatments are recycled into reusable material. Accounting for WEEE occurring outside of the treatment system, only 58% is recovered for recycling. We also estimate the CO2-eq emissions of different End-of-Life treatments of WEEE, and the embodied CO2-equivalent emissions of each WEEE category, illustrating 1) what category carry the largest environmental burden with respect to its embedded materials, and 2) the environmental impact of specific treatment options within the system. We show how the recycling rate of precious metals have significant influence over the environmental impact recovery potential of the system. Its not just the amount of material that is recycled that is important, including a proxy for expended emissions effectively illustrates the need for more precise policy implementation to ensure a functional circular economy.

Publisher

Eurowaste SRL

Subject

Waste Management and Disposal,Environmental Chemistry,Environmental Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3