Simultaneous Recording of Single-Neuron Activities and Broad-Area Intracranial Electroencephalography: Electrode Design and Implantation Procedure

Author:

Matsuo Takeshi12,Kawai Kensuke1,Uno Takeshi1,Kunii Naoto1,Miyakawa Naohisa23,Usami Kenichi1,Kawasaki Keisuke2,Hasegawa Isao24,Saito Nobuhito1

Affiliation:

1. Department of Neurosurgery, University of Tokyo Graduate School of Medicine, Tokyo, Japan

2. Department of Physiology, Niigata University School of Medicine, Niigata, Japan

3. Department of Ultrastructual Research, National Institute of Neuroscience, Kodaira, Japan

4. Center for Transdisciplinary Research, Niigata University, Niigata, Japan

Abstract

Abstract BACKGROUND: There has been growing interest in clinical single-neuron recording to better understand epileptogenicity and brain function. It is crucial to compare this new information, single-neuronal activity, with that obtained from conventional intracranial electroencephalography during simultaneous recording. However, it is difficult to implant microwires and subdural electrodes during a single surgical operation because the stereotactic frame hampers flexible craniotomy. OBJECTIVE: To describe newly designed electrodes and surgical techniques for implanting them with subdural electrodes that enable simultaneous recording from hippocampal neurons and broad areas of the cortical surface. METHODS: We designed a depth electrode that does not protrude into the dura and pulsates naturally with the brain. The length and tract of the depth electrode were determined preoperatively between the lateral subiculum and the lateral surface of the temporal lobe. A frameless navigation system was used to insert the depth electrode. Surface grids and ventral strips were placed before and after the insertion of the depth electrodes, respectively. Finally, a microwire bundle was inserted into the lumen of the depth electrode. We evaluated the precision of implantation, the recording stability, and the recording rate with microwire electrodes. RESULTS: Depth-microwire electrodes were placed with a precision of 3.6 mm. The mean successful recording rate of single- or multiple-unit activity was 14.8%, which was maintained throughout the entire recording period. CONCLUSION: We achieved simultaneous implantation of microwires, depth electrodes, and broad-area subdural electrodes. Our method enabled simultaneous and stable recording of hippocampal single-neuron activities and multichannel intracranial electroencephalography.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3