Intraoperative Real-Time Querying of White Matter Tracts During Frameless Stereotactic Neuronavigation

Author:

Elhawary Haytham1,Liu Haiying1,Patel Pratik2,Norton Isaiah3,Rigolo Laura3,Papademetris Xenophon4,Hata Nobuhiko1,Golby Alexandra J.135

Affiliation:

1. Surgical Planning Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Massachusetts

2. BrainLAB AG, Feldkirchen, Germany

3. Golby Laboratory, Brigham and Women's Hospital, Harvard Medical School, Massachusetts

4. Department of Diagnostic Radiology, Yale University of Medicine, and Department of Biomedical Engineering, Yale University, New Haven, Connecticut

5. Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Massachusetts

Abstract

Abstract BACKGROUND: Brain surgery faces important challenges when trying to achieve maximum tumor resection while avoiding postoperative neurological deficits. OBJECTIVE: For surgeons to have optimal intraoperative information concerning white matter (WM) anatomy, we developed a platform that allows the intraoperative real-time querying of tractography data sets during frameless stereotactic neuronavigation. METHODS: Structural magnetic resonance imaging, functional magnetic resonance imaging, and diffusion tensor imaging were performed on 5 patients before they underwent lesion resection using neuronavigation. During the procedure, the tracked surgical tool tip position was transferred from the navigation system to the 3-dimensional Slicer software package, which used this position to seed the WM tracts around the tool tip location, rendering a geometric visualization of these tracts on the preoperative images previously loaded onto the navigation system. The clinical feasibility of this approach was evaluated in 5 cases of lesion resection. In addition, system performance was evaluated by measuring the latency between surgical tool tracking and visualization of the seeded WM tracts. RESULTS: Lesion resection was performed successfully in all 5 patients. The seeded WM tracts close to the lesion and other critical structures, as defined by the functional and structural images, were interactively visualized during the intervention to determine their spatial relationships relative to the lesion and critical cortical areas. Latency between tracking and visualization of tracts was less than a second for a fiducial radius size of 4 to 5 mm. CONCLUSION: Interactive tractography can provide an intuitive way to inspect critical WM tracts in the vicinity of the surgical region, allowing the surgeon to have increased intraoperative WM information to execute the planned surgical resection.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3