Limiting the Current Density During Localization of the Primary Motor Cortex by Using a Tangential-Radial Cortical Somatosensory Evoked Potentials Model, Direct Electrical Cortical Stimulation, and Electrocorticography

Author:

Jahangiri Faisal R1,Sherman Jonathan H2,Sheehan Jason2,Shaffrey Mark2,Dumont Aaron S2,Vengrow Michael3,Vega-Bermudez Francisco3

Affiliation:

1. Impulse Monitoring Inc, Columbia, Maryland

2. Department of Neurosurgery, University of Virginia Medical Center, Charlottesville, Virginia

3. American Neuromonitoring Associates, Columbia, Maryland

Abstract

Abstract BACKGROUND: Traditionally, the dual-radial model, which requires high cortical stimulation intensities and may evoke intraoperative seizures, is used for mapping during resection of lesions within or near the central sulcus. OBJECTIVE: To examine the potential utility of using the multimodal tangential-radial triphasic model, which may increase the accuracy and reliability of cortical mapping at lower stimulation intensities. METHODS: We performed a retrospective review of intracranial neuromonitoring cases at the University of Virginia. The tangential-radial triphasic model used direct electrical cortical stimulation (DECS), electrocorticography, and somatosensory evoked potentials with an additional P25 peak for waveform interpretation, instead of the older dual-radial model with N20 and P30 peaks alone. The central sulcus and sensory cortex were localized by generating multiple sensory maps. DECS with 50-Hz frequency was applied. Electrocorticography was used for detection of afterdischarges. RESULTS: Fifteen consecutive intracranial cases were identified. The patients consisted of 8 males and 7 females ranging in age from 12 to 74 years (median, 53 years). Fourteen patients had an intra-axial cortical mass, and 1 patient had a cortical arteriovenous malformation. The DECS thresholds ranged from 3.7 to 12 mA (median, 6.2 mA). Localization of motor and sensory cortices was accurately performed at low thresholds with bipolar DECS in all patients. Intraoperative seizures occurred in 1 patient (7%), and new permanent postoperative functional deficits occurred in 1 patient (7%). CONCLUSION: Our mapping technique appears safe and reliable for resection near the central sulcus. The tangential-radial triphasic model allows for lower stimulation intensities, reducing the risk of intraoperative seizures.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3