Biomechanical Effect of the C2 Laminar Decortication on the Stability of C2 Intralaminar Screw Construct and Biomechanical Comparison of C2 Intralaminar Screw and C2 Pars Screw

Author:

Hong Jae Taek1,Takigawa Tomoyuki2,Udayakunmar Ranjith2,Shin Hun Kyu3,Simon Peter2,Espinoza Orías Alejandro A2,Inoue Nozomu2,An Howard S2

Affiliation:

1. Department of Neurosurgery, Catholic University of Korea, St. Vincent's Hospital, Suwon, South Korea, Sungkyunkwan University School of Medicine, Seoul, South Korea

2. Department of Orthopedic Surgery, Rush University, Chicago, Illinois, Sungkyunkwan University School of Medicine, Seoul, South Korea

3. Department of Orthopedic Surgery, Sungkyunkwan University School of Medicine, Seoul, South Korea

Abstract

Abstract BACKGROUND: There have been no reports of biomechanical stability of C1-2 constructs after decortication of the C2 lamina. In addition, few studies have compared the stability of C2 laminar screw and pars screw constructs. OBJECTIVE: To compare the biomechanical stability of 3 different C1-2 construct conditions (C2 pars screw, C2 intralaminar screw, C2 intralaminar construct with C2 laminar decortication). METHODS: Fourteen fresh-frozen cadaveric cervical specimens (C1-3) were used. In 7 specimens, pure moments of 1.5 Nm were applied in flexion/extension, lateral bending, and axial rotation. Each specimen was tested in the normal state, in the destabilized state (after odontoidectomy and resection of transverse atlantal ligament), and after application of constructs. After kinematic study, these 7 specimens underwent axial pullout strength testing of pars screw and 50% decorticated C2 intralaminar screws. In another 7 specimens, insertion torque and pullout strength were measured to compare the pars screw and intact C2 intralaminar screw. RESULTS: There were no statistically significant differences between the intact C2 intralaminar and 50% decorticated C2 intralaminar screw constructs in terms of range-of-motion limitations. The C2 pars screw construct was significantly superior to the C2 laminar screw construct in lateral bending (P < .01) and axial rotation (P < .01) and equivalent to the C2 laminar screw construct in flexion/extension (P = .42). There was no significant pullout strength difference between the 3 kinds of C2 screw. CONCLUSION: The C1 lateral mass-C2 pars screws construct was stronger than the C1 lateral mass-C2 intralaminar screw construct. Decortication of C2 laminar (up to 50%) did not affect the immediate stability of the C1-2 construct.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3