Augmentation of Anterior Lumbar Interbody Fusion with Anterior Pedicle Screw Fixation: Demonstration of Novel Constructs and Evaluation of Biomechanical Stability in Cadaveric Specimens

Author:

Karim Aftab1,Mukherjee Debi2,Ankem Murali3,Gonzalez-Cruz Jorge1,Smith Donald1,Nanda Anil1

Affiliation:

1. Department of Neurosurgery, Louisiana State University Health Sciences Center, Shreveport, Louisiana

2. Departments of Neurosurgery and Orthopedics, Louisiana State University Health Sciences Center, Shreveport, Louisiana

3. Department of Urology, Louisiana State University Health Sciences Center, Shreveport, Louisiana

Abstract

Abstract OBJECTIVE: Anterior lumbar interbody fusion (ALIF) has proven effective for indications including discogenic back pain, nonunion, and instability. Current practice involves posterior pedicle screw augmentation of the ALIF procedure (ALIF-PPS). This approach requires intraoperative repositioning of the patient for percutaneous posterior pedicle screw placement. We have developed a novel technique in which the ALIF procedure is augmented with anterior pedicle screws (APS; ALIF-APS). In this study, we introduce this new technique and compare the biomechanical stability of the novel ALIF-APS with the current standard ALIF-PPS. METHODS: The technique was demonstrated in a cadaveric L4–S1 specimen using neuronavigation and fluoroscopy. Plain radiographs and computed tomographic scans of the construct were obtained. Twelve cadaveric spines (7 men and 5 women) from donors with an average age of 81 years (range, 64–93 yr) were then harvested from L4–S1. Six specimens were dedicated to ALIF-APS constructs, and the remaining six were dedicated to ALIF-PPS constructs. The specimens were then studied at L5–S1 in the following steps: 1) intact form, 2) after anterior discectomy, 3) after implantation of titanium cages (ALIF), and 4) after APS or PPS fixation in conjunction with the ALIF. Measurements were obtained in axial rotation and left and right lateral bending flexion-extension. Data were normalized by calculating the ratio of the stiffness of the instrumented to the intact spine. Statistical analyses were then performed on the data. RESULTS: Radiographs and computed tomographic scans of the construct showed accurate placement of the APS at L5 and S1. The normalized data showed that ALIF-APS and ALIF-PPS had approximately equal stability in axial rotation (1.17 ± 0.43 versus 0.85 ± 0.14), lateral bending (0.93 ± 0.22 versus 0.95 ± 0.16), and flexion- extension (0.77 ± 0.13 versus 0.84 ± 0.2). Paired t test analysis did not show a significant difference between the biomechanical stiffness of ALIF-APS and ALIF-PPS in axial rotation, lateral bending, and flexion-extension. CONCLUSION: We demonstrate a new technique in a cadaveric specimen whereby the ALIF procedure is augmented with APS fixation using neuronavigation and fluoroscopy. Biomechanical evaluation of the constructs suggests that the ALIF-APS has comparable stability with ALIF-PPS. APS augmentation of ALIF has potential advantages over the current standard ALIF-PPS because it can 1) eliminate the patient repositioning step, 2) minimize the total number of incisions and the total operative time, and 3) protect against dislocation of the ALIF interbody graft or cage. Work is in progress to develop a low-profile system for the novel APS constructs described here.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

Reference16 articles.

1. The use of greater omentum vascularized free flaps for neurosurgical disorders requiring reconstruction;Barrow;J Neurosurg,1984

2. Posterior augmentation of an anterior lumbar interbody fusion: minimally invasive fixation versus pedicle screws in vitro;Beaubien,2004

3. Magnetic resonance anatomic study of iliocaval junction and left iliac vein positions related to L5–S1 disc;Capellades;Spine,2000

4. Prevention of enteric erosion by vascular prostheses;Deriu;Tex Heart Inst J,1982

5. The quantitative anatomy of the iliac vessels and their relation to anterior lumbosacral approach;Ebraheim;J Spinal Disord,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3