STEREOTACTIC RADIOSURGERY IMPROVES LOCOMOTOR RECOVERY AFTER SPINAL CORD INJURY IN RATS

Author:

Zeman Richard J.1,Wen Xialing2,Ouyang Nengtai2,Rocchio Ronald3,Shih Lynn3,Alfieri Alan3,Moorthy Chitti3,Etlinger Joseph D.1

Affiliation:

1. Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, and MotoGen, Inc., Mount Kisco, New York

2. Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York

3. Department of Radiation Medicine, New York Medical College, Valhalla, New York

Abstract

Abstract OBJECTIVE Currently, because of the precision of stereotactic radiosurgery, radiation can now be delivered by techniques that shape the radiation beam to the tissue target for a variety of clinical applications. This avoids unnecessary and potentially damaging irradiation of surrounding tissues inherent in conventional irradiation, so that irradiation of the minimum volume of tissue necessary for optimal therapeutic benefit can be achieved. Although conventional x-irradiation has been shown to improve recovery from spinal cord injury in animals, the efficacy of targeted irradiation of the injured spinal cord has not been demonstrated previously. The purpose of these studies was to determine whether stereotactic x-irradiation of the injured spinal cord can enhance locomotor function and spare spinal cord tissue after contusion injury in a standard experimental model of spinal cord injury. METHODS Contusion injury was produced in rats at the level of T10 with a weight-drop device, and doses of x-irradiation were delivered 2 hours after injury via a Novalis, 6-MeV linear accelerator shaped beam radiosurgery system (BrainLAB USA, Westchester, IL) in 4 sequential fractions, with beam angles 60 to 70 degrees apart, at a rate of 6.4 Gy/minute. The target volume was a 4 × 15-mm cylinder along the axis of the spinal cord, with the isocenter positioned at the contusion epicenter. Locomotor function was determined for 6 weeks after injury with the 21-point Basso, Beattie, and Bresnahan (BBB) locomotor scale and tissue sparing in histological sections of the spinal cord. RESULTS Locomotor function recovered progressively during the 6-week postinjury observation period. BBB scores were significantly greater in the 10-Gy x-irradiated group compared with controls (9.4 versus 7.3; P < 0.05), indicating hind limb weight support or dorsal stepping in contrast to hind limb joint mobility without weight bearing. Doses in the range of 2 to 10 Gy increased BBB scores progressively, whereas greater doses of 15 to 25 Gy were associated with lower BBB scores. The extent of locomotor recovery after treatment with x-irradiation correlated with measurements of spared spinal cord tissue at the contusion epicenter. CONCLUSION These results suggest a beneficial role for stereotactic radiosurgery in a rat model of acute spinal cord contusion injury and raise hopes for human treatment strategies. Additional animal studies are needed to further define potential benefits.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Reference29 articles.

1. Intravascular brachytherapy: A review of the current vascular biology;Apisarnthanarax;Am J Clin Oncol,2003

2. VEGF mRNA induction correlates with changes in the vascular architecture upon spinal cord damage in the rat;Bartholdi;Eur J Neurosci,1997

3. A sensitive and reliable locomotor rating scale for open field testing in rats;Basso;J Neurotrauma,1995

4. Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection;Basso;Exp Neurol,1996

5. MASCIS evaluation of open field locomotor scores: Effects of experience and teamwork on reliability;Basso;Multicenter Animal Spinal Cord Injury Study. J Neurotrauma,1996

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3