5-Aminolevulinic Acid-derived Tumor Fluorescence

Author:

Stummer Walter1,Tonn Jörg-Christian2,Goetz Claudia3,Ullrich Winfried4,Stepp Herbert5,Bink Andrea6,Pietsch Thorsten7,Pichlmeier Uwe8

Affiliation:

1. Department of Neurosurgery, University of Münster, Münster, Germany

2. Department of Neurosurgery, Ludwig-Maximilians-University Munich, Klinikum Grosshadern, Munich, Germany

3. Asklepios Klinik Nord Heidberg, Hamburg, Germany

4. Department of Neurosurgery, University Regensburg Medical Center, Regensburg, Germany

5. Laser-Research Laboratory, LIFE-Center at University Hospital of Munich, Munich, Germany

6. Department of Clinical Radiology, Universitätsklinikum Münster, Münster, Germany

7. Department of Neuropathology, Universtitätsklinikum Bonn, University of Bonn Medical Center, Bonn, Germany

8. Medac, Gesellschaft für klinische Spezialpräparate mbH, Wedel, Germany

Abstract

Abstract BACKGROUND: 5-Aminolevulinic acid is used for fluorescence-guided resections. During resection, different macroscopic fluorescence qualities (“strong,” “weak”) can be distinguished that help guide resections. OBJECTIVE: This prospective study was designed to assess the reliability of visible fluorescence qualities by spectrometry, pathology, and imaging. METHODS: Thirty-three patients with malignant gliomas received 5-aminolevulinic acid (20 mg/kg). After debulking surgery, standardized biopsies were obtained from tissues with “weak” and “strong” fluorescence and from nonfluorescing near and distant brain for blinded assessment of cell density and tissue type (necrosis, solid or infiltrating tumor, normal tissue). The positive predictive value was calculated. Unresected fluorescing tissue was navigated for blinded correlation to postoperative magnetic resonance imaging (MRI). Receiver operating characteristic curves were generated for assessing the classification efficiency of spectrometry. RESULTS: “Strong” fluorescence corresponded to greater spectrometric fluorescence, solidly proliferating tumor, and high cell densities, whereas “weak” fluorescence corresponded to lower spectrometric fluorescence, infiltrating tumor, and medium cell densities. The positive predictive value was 100% in strongly fluorescing tissue and 95% in weakly fluorescing tissue. Spectrometric fluorescence was detected in marginal tissue without macroscopic fluorescence. Depending on the threshold, spectrometry displayed greater sensitivity but lower specificity (accuracy 88.4%). Residual MRI enhancement in the tumor bed was detected in 15 of 23 (65%) patients with residual fluorescence, but in none of the patients without residual fluorescence. CONCLUSION: Macroscopic fluorescence qualities predict solid and infiltrating tumor, providing useful information during resection. Fluorescence appears superior to contrast enhancement on MRI for indicating residual tumor. Spectrometry, on the other hand, is more sensitive but less specific, depending on threshold definition.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

Cited by 233 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3