The Far Lateral Transpontomedullary Sulcus Approach to Pontine Cavernous Malformations: Technical Report and Surgical Results

Author:

Abla Adib A.1,Benet Arnau1,Lawton Michael T.1

Affiliation:

1. Department of Neurological Surgery, Center for Cerebrovascular Research, University of California, San Francisco, California

Abstract

Abstract BACKGROUND: Pontine cavernous malformations (CMs) located on a peripheral pontine surface or the fourth ventricular floor are resectable lesions, but those deep within the pons away from a pial surface are typically observed. However, the anterior bulge of the pons formed by the brachium pontis creates a unique entry point for access to deep pontine lesions from below, working upward through the pontomedullary sulcus. OBJECTIVE: We developed a transpontomedullary sulcus (TPMS) approach to these lesions. METHODS: The TPMS approach used the far lateral craniotomy and upper vagoaccessory triangle to define the surgical corridor. The entry point was above the olive, lateral to the pyramidal tracts and cranial nerve (CN) VI, above the preolivary sulcus and CN XII, and medial to CNs VII and VIII and CNs IX through XI. RESULTS: Four patients underwent this approach. All presented with hemorrhage and CN VI palsies. All pontine CMs were resected completely. Three patients were improved or unchanged, with good outcomes (modified Rankin Scale score ⩽2) in all patients. CONCLUSION: The central pons remains difficult territory to access, and new surgical corridors are needed. The bulging underbelly of the pons allows access to pontine lesions deep to the pial surface from below. The far lateral TPMS approach is a novel and more direct alternative to the retrosigmoid transmiddle cerebellar peduncle approach. Unlike the retrosigmoid approach, the TPMS approach requires minimal parenchymal transgression and uses a brainstem entry point medial to most lower CNs. Favorable results demonstrate the feasibility of resecting pontine CMs that might have been previously deemed unresectable.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3