Three-Dimensional Reconstruction of the Topographical Cerebral Surface Anatomy for Presurgical Planning With Free OsiriX Software

Author:

Harput Mehmet V.1,Gonzalez-Lopez Pablo1,Türe Uğur1

Affiliation:

1. Department of Neurosurgery, Yeditepe University School of Medicine, Istanbul, Turkey

Abstract

Abstract BACKGROUND: During surgery for intrinsic brain lesions, it is important to distinguish the pathological gyrus from the surrounding normal sulci and gyri. This task is usually tedious because of the pia-arachnoid membranes with their arterial and venous complexes that obscure the underlying anatomy. Moreover, most tumors grow in the white matter without initially distorting the cortical anatomy, making their direct visualization more difficult. OBJECTIVE: To create and evaluate a simple and free surgical planning tool to simulate the anatomy of the surgical field with and without vessels. METHODS: We used free computer software (OsiriX Medical Imaging Software) that allowed us to create 3-dimensional reconstructions of the cerebral surface with and without cortical vessels. These reconstructions made use of magnetic resonance images from 51 patients with neocortical supratentorial lesions operated on over a period of 21 months (June 2011 to February 2013). The 3-dimensional (3-D) anatomic images were compared with the true surgical view to evaluate their accuracy. In all patients, the landmarks determined by 3-D reconstruction were cross-checked during surgery with high-resolution ultrasonography; in select cases, they were also checked with indocyanine green videoangiography. RESULTS: The reconstructed neurovascular structures were confirmed intraoperatively in all patients. We found this technique to be extremely useful in achieving pure lesionectomy, as it defines tumor's borders precisely. CONCLUSION: A 3-D reconstruction of the cortical surface can be easily created with free OsiriX software. This technique helps the surgeon perfect the mentally created 3-D picture of the tumor location to carry out cleaner, safer surgeries.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

Reference20 articles.

1. Surgical anatomy of microneurosurgical sulcal key points;Ribas;Neurosurgery,2006

2. Topographic anatomy of the insular region;Türe;J Neurosurg,1999

3. Intraoperative brain shift and deformation: a quantitative analysis of cortical displacement in 28 cases;Roberts;Neurosurgery,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3