Frameless Stereotactic Drilling for Placement of Depth Electrodes in Refractory Epilepsy: Operative Technique and Initial Experience

Author:

Dorfer Christian1,Stefanits Harald1,Pataraia Ekaterina2,Wolfsberger Stefan1,Feucht Martha3,Baumgartner Christoph4,Czech Thomas1

Affiliation:

1. Departments of Neurosurgery

2. Pediatrics and Adolescence Medicine, and

3. Neurology, Medical University of Vienna, Vienna, Austria

4. 2nd Neurological Department, General Hospital Hietzing, Vienna, Austria

Abstract

Abstract BACKGROUND: For stereotactic implantation of depth electrodes in refractory epilepsy, both frame-based and frameless techniques have been developed. The higher versatility of current frameless techniques compared with framed-based methods is paid by the need of a standard burr hole for the implantation of 1 electrode. OBJECTIVE: To develop a frameless method that allows convenient implantation of the electrode via a percutaneous bolt as used in frame-based methods, thereby avoiding the need for a standard burr hole. METHODS: We adopted our technique from frameless stereotactic biopsy and designed the GIDE, a bone-fixated Guide for Implantation of Depth Electrodes. This reducing sleeve works as a stabilizer of the neuronavigation arm through bony contact and allows percutaneous stereotactic drilling, screwing of an implantation bolt, and placement of the depth electrode. RESULTS: Twenty-six electrodes in 7 patients (5 male and 2 female patients; median age, 19.6 years; range, 5.5-39.1 years) were successfully implanted. The overall accuracy was comparable to that of frameless stereotactic biopsy with a target deviation of 3.0 ± 1.9 mm (mean ± SD). All electrodes were within or touched the targeted anatomic structure with an adequate quality of the recordings. We encountered no hemorrhage or neurological deficit related to the depth electrode. CONCLUSION: Our technique combines the high versatility of frameless stereotaxy with the convenient implantation and fixation of the depth electrode via a percutaneous bolt used in frame-based stereotactic methods. Thus, our technique allows fast, efficient implantation of depth electrodes for intracranial electroencephalography recordings.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Clinical Neurology,Surgery

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3