Progression of Experimental Infantile Hydrocephalus and Effects of Ventriculoperitoneal Shunts: An Analysis Correlating Magnetic Resonance Imaging with Gross Morphology

Author:

McAllister James P.12,Cohen Mitchell I.1,O'Mara Kathleen A.1,Johnson Michele H.34

Affiliation:

1. Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania

2. Department of Neurosurgery, Temple University School of Medicine, Philadelphia, Pennsylvania

3. Department of Diagnostic Imaging, Temple University School of Medicine, Philadelphia, Pennsylvania

4. Department of Radiology, Medical College of Virginia, Richmond, VA 23298-0615.

Abstract

Abstract Although previous ultrasonographic studies did monitor ventricular enlargement successfully in experimentally-induced models of feline hydrocephalus, the resolution of neuroanatomic detail was relatively poor after placement of a ventriculoperitoneal (VP) shunt because the skull had ossified over the coronal sutures. Therefore, the present study employed magnetic resonance imaging to follow the progression of ventriculomegaly more accurately, as well as to evaluate the compensatory effects of VP shunting. Hydrocephalus was induced in kittens between 7 and 10 days old by injection of kaolin into the cisterna magna. Age-matched controls received similar injections of saline. At 9 to 14 days after the kaolin injection, the hydrocephalic animals received VP shunts. Anesthetized kittens were scanned at various intervals before and after shunt placement and were killed for morphological correlation. The features observed on the magnetic resonance imaging scans were consistent with the gross morphological changes that accompanied ventricular enlargement. The lateral ventricle began to enlarge as early as 1 day after the kaolin injection, and within 3 days, both the occipital and temporal horns, along with the 4th ventricle, showed signs of moderate dilatation. By 5 days, a bilateral communication had been established through the septum pellucidum. Continued expansion of the ventricular system occurred from 6 to 20 days after injection, to the point where the cerebral cortex was reduced to less than 25% of its original thickness. The internal capsule was stretched and edematous, the caudate nucleus was compressed ventrolaterally, and the cerebellar hemispheres were eroded and/or compressed. Animals in which shunts were successfully placed demonstrated a dramatic improvement in behavior, and a reduction of about 50% in the size of the lateral ventricles within 2 days. In some cases, the lateral ventricles became slit-like within 1 week. When they were killed, about half of the animals that received shunts exhibited mild to moderate ventriculomegaly. These results indicate that magnetic resonance imaging is an excellent method for visualizing the morphological changes associated with this animal model, that these alterations occur soon after the onset of hydrocephalus, and that VP shunting can successfully reduce ventriculomegaly.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3