Initial Clinical Experience and Biomechanical Analysis of a Novel Gravity Unit–Assisted Valve (M.blue) in Pediatric Patients With Hydrocephalus: A Retrospective Study With Two Years of Follow-up

Author:

Issa Mohammed1ORCID,Paggetti Filippo1,Seitz Angelika2,von Hardenberg August3,Unterberg Andreas W.1ORCID,El Damaty Ahmed1ORCID

Affiliation:

1. Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany;

2. Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany;

3. Department of Product Management, Christoph Miethke GmbH & Co. KG, Potsdam, Germany

Abstract

BACKGROUND: Overdrainage is a widely reported complication representing common indication for shunt revision. Despite recent advances in valve design, repeated shunt revisions represent burden on healthcare systems. OBJECTIVE: To investigate the efficiency of a novel gravity unit–assisted programmable valve “M.blue” in pediatric hydrocephalus using clinical and biomechanical analyses. METHODS: Thisretrospective single-center study included pediatric patients who received M.blue valve between April 2019 and 2021. Several clinical and biomechanical parameters were documented including complications and revision rates. Flow rate, functional assessment in vertical and horizontal positions, and extent of depositions inside valve were analyzed in explanted valves. RESULTS: Thirty-seven M.blue valves in 34 pediatric patients with hydrocephalus (mean age 2.82 ± 3.91 years) were included. Twelve valves (32.4%) were explanted during a follow-up period of 27.3 ± 7.9 months. One-year survival rate of 89% and overall survival rate of 67.6% with a valve survival average of 23.8 ± 9.7 months were observed. Patients with explanted valves (n = 12) were significantly younger, with 0.91 ± 0.54 years of age in average (P= .004), and showed significantly more adjustments difficulties ( P= .009). 58.3% of explanted valves showed deposits in more than 75% of the valve surface despite normal cerebrospinal fluid findings and were associated with dysfunctional flow rate in vertical, horizontal, or both positions. CONCLUSION: The novel M.blue valve with integrated gravity unit is efficient in pediatric hydrocephalus with comparable survival rate. Deposits inside valves could affect its flow rate in different body positions and might lead to dysfunction or difficulties in valve adjustments.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3