Hybrid Clot Histomic–Transcriptomic Models Predict Functional Outcome After Mechanical Thrombectomy in Acute Ischemic Stroke

Author:

Santo Briana A.123,Poppenberg Kerry E.12,Ciecierska Shiau-Sing K.1,Baig Ammad A.13,Raygor Kunal P.13,Patel Tatsat R.13,Shah Munjal1,Levy Elad I.13,Siddiqui Adnan H.13,Tutino Vincent M.123ORCID

Affiliation:

1. Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA;

2. Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, New York, USA;

3. Department of Neurosurgery, University at Buffalo, Buffalo, New York, USA

Abstract

BACKGROUND AND OBJECTIVES: Histologic and transcriptomic analyses of retrieved stroke clots have identified features associated with patient outcomes. Previous studies have demonstrated the predictive capacity of histology or expression features in isolation. Few studies, however, have investigated how paired histologic image features and expression patterns from the retrieved clots can improve understanding of clot pathobiology and our ability to predict long-term prognosis. We hypothesized that computational models trained using clot histomics and mRNA expression can predict early neurological improvement (ENI) and 90-day functional outcome (modified Rankin Scale Score, mRS) better than models developed using histological composition or expression data alone. METHODS: We performed paired histological and transcriptomic analysis of 32 stroke clots. ENI was defined as a delta-National Institutes of Health Stroke Score/Scale > 4, and a good long-term outcome was defined as mRS ≤2 at 90 days after procedure. Clots were H&E-stained and whole-slide imaged at 40×. An established digital pathology pipeline was used to extract 237 histomic features and to compute clot percent composition (%Comp). When dichotomized by either the ENI or mRS thresholds, differentially expressed genes were identified as those with absolute fold-change >1.5 and q < 0.05. Machine learning with recursive feature elimination (RFE) was used to select clot features and evaluate computational models for outcome prognostication. RESULTS: For ENI, RFE identified 9 optimal histologic and transcriptomic features for the hybrid model, which achieved an accuracy of 90.8% (area under the curve [AUC] = 0.98 ± 0.08) in testing and outperformed models based on histomics (AUC = 0.94 ± 0.09), transcriptomics (AUC = 0.86 ± 0.16), or %Comp (AUC = 0.70 ± 0.15) alone. For mRS, RFE identified 7 optimal histomic and transcriptomic features for the hybrid model. This model achieved an accuracy of 93.7% (AUC = 0.94 ± 0.09) in testing, also outperforming models based on histomics (AUC = 0.90 ± 0.11), transcriptomics (AUC = 0.55 ± 0.27), or %Comp (AUC = 0.58 ± 0.16) alone. CONCLUSION: Hybrid models offer improved outcome prognostication for patients with stroke. Identified digital histology and mRNA signatures warrant further investigation as biomarkers of patient functional outcome after thrombectomy.

Funder

National Institutes of Health

James H. Cummings Foundation

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3