Spatial Distribution of Meningiomas: A Magnetic Resonance Image Atlas

Author:

Patel Ruchit V.12ORCID,Yao Shun13ORCID,Aguilar Murillo Efrain4,Huang Raymond Y.24,Bi Wenya Linda12ORCID

Affiliation:

1. Department of Neurosurgery, Brigham and Women's Hospital, Boston, Massachusetts, USA;

2. Harvard Medical School, Boston, Massachusetts, USA;

3. Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China;

4. Division of Neuroradiology, Brigham and Women's Hospital, Boston, Massachusetts, USA

Abstract

BACKGROUND AND OBJECTIVES: The size and anatomic location of meningiomas have been shown to correlate with distinct clinical manifestations, histopathological subtypes, and surgical risk. However, meningioma anatomic origin sites can be obscured in large tumors and those crossing compartments. We therefore sought to apply unbiased lesion mapping to localize intracranial meningioma distributions and their association with biology and grade. METHODS: MRI scans, World Health Organization (WHO) grade, and a molecularly Integrated Grade (IG) derived from cytogenetics were analyzed from adult patients with intracranial meningiomas. Semi-automated tumor segmentation was performed on T1-weighted contrast-enhanced MRI. We used the voxel-based lesion mapping technique to generate a meningioma atlas, mapping spatial frequency and correlating with tumor grades. RESULTS: Of 881 patients with meningioma (median age: 57 years, 68.8% female), 589 were WHO grade 1 (66.8%), 265 WHO grade 2 (30.1%), and 27 WHO grade 3 (3.1%) with a median tumor volume of 14.6 cm3. After molecular reclassification, 585 were IG-1 (66.4%), 160 IG-2 (18.2%), and 136 IG-3 (15.4%). Benign tumors were concentrated in and around the midline anterior skull base while malignant meningiomas were enriched in the falcine/parasagittal region and the sphenoid wing, similar to the distribution when stratified by chromosome 1p loss. Meningiomas exhibited sharper spatial clustering when stratified by the molecular IG than by WHO grade. WHO grade 2 meningiomas divided equally across IG 1-3, with corresponding partition of spatial distribution in the midline anterior skull base (in WHO grade 2, IG-1) and falcine/parasagittal and sphenoid regions (WHO grade 2, IG-3). Meningioma volumes significantly varied across age, sex, and WHO/IG grades. CONCLUSION: We demonstrate the utility of voxel-based lesion mapping for intracranial tumors, characterizing distinct meningioma distribution patterns across histopathological and molecularly defined grades. Molecular grading associated with sharper tumor spatial clusters, supporting a phenotype-genotype association in meningiomas.

Funder

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3