Application of Intraoperative Rapid Molecular Diagnosis in Precision Surgery for Glioma: Mimic the World Health Organization CNS5 Integrated Diagnosis

Author:

Xue Hao123,Han Zhe123,Li Haiyan1,Li Xueen1,Jia Deze1,Qi Mei4,Zhang Hui3,Zhang Kailiang1,Gong Jie1,Wang Hongwei1,Feng Zichao1,Ni Shilei1,Han Bo45,Li Gang123

Affiliation:

1. Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong, China;

2. Institute of Brain and Brain-Inspired Science, Shandong University, Shandong, China;

3. Shandong Key Laboratory of Brain Function Remodeling, Shandong, China;

4. Department of Pathology, Shandong University Qilu Hospital, Shandong, China;

5. Department of Pathology, Shandong University School of Basic Medical Sciences, Shandong, China;

Abstract

BACKGROUND: With the advent of the molecular era, the diagnosis and treatment systems of glioma have also changed. A single histological type cannot be used for prognosis grade. Only by combining molecular diagnosis can precision medicine be realized. OBJECTIVE: To develop an automatic integrated gene detection system (AIGS) for intraoperative detection in glioma and to explore its positive role in intraoperative diagnosis and treatment. METHODS: We analyzed the isocitrate dehydrogenase 1 (IDH1) mutation status of 105 glioma samples and evaluated the product's potential value for diagnosis; 37 glioma samples were detected intraoperatively to evaluate the feasibility of using the product in an actual situation. A blinding method was used to evaluate the effect of the detection technology on the accuracy of intraoperative histopathological diagnosis by pathologists. We also reviewed the current research status in the field of intraoperative molecular diagnosis. RESULTS: Compared with next-generation sequencing, the accuracy of AIGS in detecting IDH1 was 100% for 105 samples and 37 intraoperative samples. The blind diagnostic results were compared between the 2 groups, and the molecular information provided by AIGS increased the intraoperative diagnostic accuracy of glioma by 16.2%. Using the technical advantages of multipoint synchronous detection, we determined the tumor molecular margins for 5 IDH-positive patients and achieved accurate resection at the molecular level. CONCLUSION: AIGS can quickly and accurately provide molecular information during surgery. This methodology not only improves the accuracy of intraoperative pathological diagnosis but also provides an important molecular basis for determining tumor margins to facilitate precision surgery.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Neurology (clinical),Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3