A Scoping Review of Focused Ultrasound Enhanced Drug Delivery for Across the Blood–Brain Barrier for Brain Tumors

Author:

Young Christopher M.1,Viña-González Ariel2,de Toledo Aguiar Rodrigo Salmeron1,Kalman Cheyenne1,Pilitsis Julie G.3ORCID,Martin-Lopez Laura I.4,Mahani Tanmay1,Pineda-Pardo José A.2

Affiliation:

1. Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, USA;

2. HM CINAC (Centro Integral de Neurociencias Abarca Campal), Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain;

3. Department of Neurosurgery, University of Arizona, Tucson, Arizona, USA;

4. Pediatric Oncology Unit, Hospital Universitario HM Montepríncipe, HM Hospitales/CIOCC, Madrid, Spain

Abstract

BACKGROUND AND OBJECTIVES: Previous mechanisms of opening the blood–brain barrier (BBB) created a hypertonic environment. Focused ultrasound (FUS) has recently been introduced as a means of controlled BBB opening. Here, we performed a scoping review to assess the advances in drug delivery across the BBB for treatment of brain tumors to identify advances and literature gaps. METHODS: A review of current literature was conducted through a MEDLINE search inclusive of articles on FUS, BBB, and brain tumor barrier, including human, modeling, and animal studies written in English. Using the Rayyan platform, 2 reviewers (J.P and C.Y) identified 967 publications. 224 were chosen to review after a title screen. Ultimately 98 were reviewed. The scoping review was designed to address the following questions: (1) What FUS technology improvements have been made to augment drug delivery for brain tumors? (2) What drug delivery improvements have occurred to ensure better uptake in the target tissue for brain tumors? RESULTS: Microbubbles (MB) with FUS are used for BBB opening (BBBO) through cavitation to increase its permeability. Drug delivery into the central nervous system can be combined with MB to enhance transport of therapeutic agents to target brain tissue resulting in suppression of tumor growth and prolonging survival rate, as well as reducing systemic toxicity and degradation rate. There is accumulating evidence demonstrating that drug delivery through BBBO with FUS-MB improves drug concentrations and provides a better impact on tumor growth and survival rates, compared with drug-only treatments. CONCLUSION: Here, we review the role of FUS in BBBO. Identified gaps in the literature include impact of tumor microenvironment and extracellular space, improved understanding and control of MB and drug delivery, further work on ideal pharmacologics for delivery, and clinical use.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3