Point-of-Care 3-Dimensional–Printed Polyetheretherketone Customized Implants for Cranioplastic Surgery of Large Skull Defects

Author:

Pöppe Johannes P.1ORCID,Spendel Mathias1,Griessenauer Christoph J.1ORCID,Gaggl Alexander2ORCID,Wurm Werner3,Enzinger Simon2

Affiliation:

1. Department of Neurosurgery, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria;

2. Department of Oral and Maxillofacial Surgery, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria;

3. Department of Medical Engineering, University Hospital Salzburg, Paracelsus Medical University, Salzburg, Austria

Abstract

BACKGROUND AND OBJECTIVES: 3-Dimensional (3D) printing has become a common tool to aid implant molding for cranioplastic surgery of large skull defects. Until now, 3D printing of cranial implants itself has not been used, mainly because of medicolegal concerns. With a 3D printer developed for printing medical applications and with implant-grade polyetheretherketone (PEEK) filament available, we established a workflow (in compliance with medical device regulations) to 3D print cranial implants for cranioplastic surgery directly at the point of care (POC). Here, we describe the implementation of 3D printing these PEEK implants for cranioplastic surgery at our academic hospital. METHODS: A thorough design and 3D printing process, in accordance with local medical device regulations, was developed. Implants are digitally designed based upon pre- and post-craniectomy cranial computed tomography scans by trained 3D printing experts from the department of medical engineering at our institution. Implants are then produced on a medical 3D printer with implant-grade PEEK filament using the fused filament fabrication process. After postprocessing and steam sterilization, implantation for reconstruction of the skull can be performed. RESULTS: Cranioplastic surgery with a 3D-printed PEEK implant was performed at our institution in a patient with a large frontotemporoparietal skull defect after traumatic brain injury with consecutive decompressive craniectomy. No intra- or post-operative complications occurred. Postoperative cranial computed tomography scans showed perfect reconstruction of precraniectomy skull shape. The aesthetic result was promising and satisfactory to the patient. CONCLUSION: This novel 3D printing workflow enables the production of patient-specific cranial implants from PEEK, to reconstruct large skull defects directly at the POC in accordance with the European Medical Device Regulation. This marks an unprecedented technological and legal advancement, enabling the hospital infrastructure not only to deliver the cranioplastic surgery itself, but also additive manufacturing of the implant directly at the POC.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3