Affiliation:
1. Department of Master of Computer Applications New Horizon College of Engineering Bangalore, Karnataka, INDIA
2. Department of Studies in Computer Science Mysore University, Mysore, Karnataka, INDIA
3. Department of Computer Science Engineering Government College of Engineering Chamarajnagar, Mysore District, Karnataka, INDIA
Abstract
Similarity measures are widely used in various applications such as information retrieval, image and object recognition, text retrieval, and web data search. In this paper, we propose similarity-based methods for defect detection on patterned textures using five different similarity measures, viz., Normalized Histogram Intersection Coefficient, Bhattacharyya Coefficient, Pearson Product-moment Correlation Coefficient, Jaccard Coefficient and Cosine-angle Coefficient. Periodic blocks are extracted from each input defective image and similarity matrix is obtained based on the similarity coefficient of histogram of each periodic block with respect to itself and other all periodic blocks. Each similarity matrix is transformed into dissimilarity matrix containing true-distance metrics and Ward’s hierarchical clustering is performed to discern between defective and defect-free blocks. Performance of the proposed method is evaluated for each similarity measure based on precision, recall and accuracy for various real fabric images with defects such as broken end, hole, thin bar, thick bar, netting multiple, knot, and missing pick.
Publisher
Institute for Project Management Pvt. Ltd
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献