Modeling and Analysis for Surface roughness in Machining EN-31 steel using Response Surface Methodology

Author:

Abhang L B1,Hameedullah M1

Affiliation:

1. Mechanical Engineering Department, Aligarh Muslim University, Aligarh, UP, (INDIA)

Abstract

This paper utilizes the regression modeling in turning process of En-31 steel using response surface methodology (RSM) with factorial design of experiments. A first-order and second-order surface roughness predicting models were developed by using the experimental data and analysis of the relationship between the cutting conditions and response (surface roughness). In the development of predictive models, cutting parameters of cutting velocity, feed rate, depth of cut, tool nose radius and concentration of lubricants were considered as model variables, surface roughness were considered as response variable. Further, the analysis of variance (ANOVA) was used to analyze the influence of process parameters and their interaction during machining. From the analysis, it is observed that feed rate is the most significant factor on the surface roughness followed by cutting speed and depth of cut at 95% confidence level. Tool nose radius and concentration of lubricants seem to be statistically less significant at 95% confidence level. Furthermore, the interaction of cutting velocity/feed rate, cutting velocity/ nose radius and depth of cut/nose radius were found to be statistically significant on the surface finish because their p-values are smaller than 5%. The predicted surface roughness values of the samples have been found to lie close to that of the experimentally observed values.

Publisher

Institute for Project Management Pvt. Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3