Abstract
As redes neurais artificiais (RNA) têm sido utilizadas com sucesso em previsões de variáveis baseadas em acontecimentos anteriores, porém, escassos são os estudos sobre a aplicação dessa solução à previsão de níveis de rio em eventos de enchentes. Este estudo teve como objetivo avaliar a aplicação de RNA para previsão em curto prazo dos níveis do rio Itajaí-Açu no município de Blumenau, Santa Catarina, Brasil. O município foi escolhido como área de estudo por seu extenso histórico de inundações. Utilizou-se para o treinamento das redes dados de chuva e de nível do rio das estações telemétricas do Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH) da Agência Nacional de Águas (ANA) localizadas na bacia hidrográfica do rio Itajaí-Açu. Ambos dados apresentam frequência de 15 min. Foram selecionados 7 eventos hidrológicos de alerta registrados pela estação limnimétrica instalada no município de Blumenau. Os dados foram coletados e reunidos de acordo com sua localização e tipo, e foram escalados à mesma unidade de medida: cm para níveis e mm para dados de precipitação. Foram utilizados dois tipos de redes: Long Short Term Memory (LSTM) e Multi Layer Perceptron (MLP). Para avaliação de desempenho dos modelos, utilizou-se os seguintes parâmetros: coeficiente de determinação (R2), o Coeficiente de Eficiência de Nash-Sutcliffe (NSE), a Raíz do Erro Quadrático Médio (RMSE), Erro Quadrático Médio (MSE), o Erro Médio Absoluto (MAE) e a Média Percentual Absoluta do Erro (MAPE). Para o modelo com melhor desempenho – modelo LSTM com horizonte de previsão de 6 h – obteve-se: R2 = 0,996594; NSE = 0,9995548; RMSE = 7,72 cm; MSE = 59,65 cm; MAE = 4,82 cm; MAPE = 1,89 %; e MSE val. = 0,000035. O estudo evidenciou que o modelo LSTM, com simples pré-processamento, é capaz de prever o nível do Itajaí-Açu durante eventos extremos de cheia, com alta precisão, apresentando resultados melhores em comparação com o modelo MLP. Este estudo apresenta uma proposta de solução de modelo de previsão de níveis viável, passível de aplicação como ferramenta de previsão em tempo real para a área de estudo. Este trabalho contribui para o desenvolvimento de sistemas de apoio à gestão de recursos hídricos e para mitigação dos impactos provocados por desastres, abrangendo os âmbitos social, econômico e ambiental.
Publisher
Companhia Brasileira de Producao Cientifica
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献