Extended Methamphetamine Self-Administration in Rats Results in a Selective Reduction of Dopamine Transporter Levels in the Prefrontal Cortex and Dorsal Striatum Not Accompanied by Marked Monoaminergic Depletion
Author:
Publisher
American Society for Pharmacology & Experimental Therapeutics (ASPET)
Subject
Pharmacology,Molecular Medicine
Reference40 articles.
1. The Neurotoxic Effects of 3,4-Methylenedioxymethamphetamine (MDMA) and Methamphetamine on Serotonin, Dopamine, and GABA-ergic Terminals: An In-Vitro Autoradiographic Study In Rats
2. Neuronal dopamine transporter activity, density and methamphetamine inhibition are differentially altered in the nucleus accumbens and striatum with no changes in glycosylation in rats behaviorally sensitized to methamphetamine
3. A comparison of the effects of different operant training experiences and dietary restriction on the reinstatement of cocaine-seeking in rats
4. Structural and metabolic brain changes in the striatum associated with methamphetamine abuse
5. Patterns of Methamphetamine Abuse and Their Consequences
Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets;Substance Abuse and Rehabilitation;2024-08
2. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague Dawley Rats: Comparisons with Methamphetamine and Cocaine;Brain Sciences;2024-03-06
3. Impacts of Self-Administered 3,4-Methylenedioxypyrovalerone (MDPV) Alone, and in Combination with Caffeine, on Recognition Memory and Striatal Monoamine Neurochemistry in Male Sprague-Dawley Rats: Comparisons with Methamphetamine and Cocaine;2024-01-31
4. The Neurobiology of Methamphetamine Addiction and the Potential to Reduce Misuse Through Conjugate Vaccines Targeting Toll-Like Receptor 4;Cureus;2023-06-11
5. Association of coffee consumption and striatal volume in patients with Parkinson's disease and healthy controls;CNS Neuroscience & Therapeutics;2023-04-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3