Numerical simulation of flow pattern at a divergent pier in a bend with different relative curvature radii using ansys fluent

Author:

Lahsaei Kooshyar1,Vaghefi Mohammad1,Sedighi Farid1,Chooplou Chonoor Abdi2

Affiliation:

1. Civil Engineering Department, Persian Gulf University, Bushehr, Iran

2. Faculty of Civil and Environmental Engineering, Tarbiat Modares University, Tehran, Iran

Abstract

In this work, the three-dimensional flow around piers in river meanders under rigid bed conditions was modeled. The software ANSYS FLUENT was used to perform the simulation. The study was carried out in a 180° curve accompanied by cylindrical piers with a diameter of 5 cm and a slope angle of 21° under rigid bed conditions. The results of the comparisons showed that this model can help simulate the flow pattern around inclined bridge piers in bended channels with acceptable accuracy. To analyze the flow pattern, the work was followed by studying the effect of the parameters that affect the physics of the problem: the relative radius of curvature of the curve, the location of the piers within the 180° curve, and the arrangement of the piers relative to the flow direction. The results showed that increasing the relative radius of curvature as well as the range of the bend reduced the tangential velocity values; the minimum tangential velocity value occurred at a relative radius of curvature of 5. With the pier group installed in the direction of flow, the maximum secondary flow power occurred at the 60° position at about 18.8%, while with the pier group installed across the flow, the maximum secondary flow power occurred at the 120° position at 14.2%. A comparison of the vorticity at the perpendicular and downstream positions showed that the vorticity values at the 60° and 120° positions were greater than the corresponding values at the 90° position in both cases.

Publisher

Faculty of Engineering, University of Rijeka

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3