Prediction models for manganese, iron and ammonium in raw water for a drinking water treatment plant Butoniga (croatia)

Author:

Volf Goran1ORCID,Krbavčić Morana1,Sušanj Čule Ivana1,Zorko Sonja2

Affiliation:

1. Department for Hydrotehnics, Faculty of Civil Engineering, University of Rijeka, Radmile Matejčić 3, 51000 Rijeka, Croatia

2. Istarski Vodovod d.o.o., 52420 Buzet, Croatia

Abstract

Drinking water treatment plant Butoniga is one of the main water supply facilities for potable water in Istria (Croatia). Water for treatment process is captured from the Butoniga reservoir which is a small and relatively shallow reservoir. As such, the reservoir is very sensitive to eutrophication and degradation processes caused by climate change and human activities in the watershed. In summer months during tourist season, when at highest water demand and lowest water level at the reservoir, the water temperature is the most critical parameter during treatment process. To capture colder water, raw water for treatment is taken from the lowest water intake, i.e. from the deepest layer in the Butoniga reservoir. This layer has another problem, namely increased concentrations of manganese, iron and ammonium under lower pH values. This study provides prediction models for manganese, iron and ammonium for seven days in advance, which are some of the most critical parameters during summer months and have significant influence on treatment process of raw water. For modelling purposes, machine learning software Weka was used to build models in form of model trees. Obtained prediction models for manganese, iron and ammonium have high accuracy compared to the measured data with a good prediction of the peak values. Therefore, obtained models can help in optimization of the treatment processes at the treatment plant, which are depending on the quality of raw water in Butoniga reservoir.

Publisher

Faculty of Engineering, University of Rijeka

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3