The elastic-plastic delamination analysis of layered beam configurations

Author:

Rizov Victor1

Affiliation:

1. University of Architecture, Civil Engineering and Geodesy, Sofia, Bulgaria

Abstract

The elastic-plastic delamination fracture in layered beams was studied theoretically. Two Four Point Bend (FPB) beam configurations (the Double Leg Four Point Bend (DLFPB) and the Single Leg Four Point Bend (SLFPB)) were analyzed. An elastic-plastic constitutive model with power law hardening was used in the analysis. Fracture behavior was studied by applying the J-integral approach. The analytical solutions of the J-integral were obtained at characteristic levels of the external load. The solutions obtained were verified by analyzing the strain energy release rate with taking into account the material non-linearity. The variation of J-integral value in a function of crack location along the beam dept was investigated. The effect of material non-linearity on the fracture was evaluated. The analysis revealed that the J-integral value decreased with increasing the lower crack arm thickness. It was also found that the material non-linearity has to be taken into account in fracture mechanics based safety design of structural members and components made of layered materials. The analytical solutions obtained are very useful for non-linear investigations, since the simple formulae derived capture the essentials of non-linear fracture in the layered beams under consideration.

Publisher

Faculty of Engineering, University of Rijeka

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3