PREDICTION OF ROCK TENSILE FRACTURE TOUGHNESS: HYBRID ANN-WOA MODEL APPROACH

Author:

Dolatshahi Alireza,Molladavoodi Hamed

Abstract

Various techniques are used in rock engineering to evaluate tensile fracture toughness, which is a critical parameter in assessing and designing stable rock structures. These methods typically involve laboratory investigations and statistical analysis. Nevertheless, artificial neural networks can also establish correlations among different data sets. Artificial intelligence approaches are becoming increasingly essential in all engineering fields, including the ones that study rock fracture mechanics. In this work, an artificial neural network with a hidden layer and eight neurons as well as a hybrid artificial neural network with a whale optimization algorithm were utilized to determine the tensile fracture toughness of rocks. In order to develop accurate models, this study has carefully selected four fundamental parameters to serve as inputs. These parameters include radius, thickness, crack length, and mean tensile strength of specimens. Also, 113 rock datasets were collected for models. The results show that utilization of the optimization algorithm enhances the precision in estimating the tensile fracture toughness of rocks. The R2 improved to 0.93 when the whale optimization algorithm was used. On the other hand, the correlation factor reached 0.81 when the whale optimization algorithm was not implemented.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3