Prediction of the Height of Fracturing via Gene Expression Programming in Australian Longwall Panels: A Comparative Study

Author:

Rasouli Hadi,Shahriar Kourosh,Madani Sayyed Hasan

Abstract

The caving and subsidence developments above a longwall panel usually result in fractures of the overburden, which decrease the strength of the rock mass and its function. The height of fracturing (HoF) includes the caved and continuous fractured zones affected by a high degree of bending. Among the various empirical models, Ditton’s geometry and geology models are widely used in Australian coalfields. The application of genetic programming (GP) and gene expression programming (GEP) in longwall mining is entirely new and original. This work uses a GEP method in order to predict HoF. The model variables, including the panel width (W), cover depth (H), mining height (T), unit thickness (t), and its distance from the extracted seam (y), are selected via the dimensional analysis and Buckingham’s P-theorem. A dataset involving 31 longwall panels is used to present a new nonlinear regression function. The statistical estimators, including the coefficient of determination (R2), the average error (AE), the mean absolute percentage error (MAPE), and the root mean square error (RMSE), are used to compare the performance of the discussed models. The R2 value for the GEP model (99%) is considerably higher than the corresponding values of Ditton’s geometry (61%) and geology (81%) models. Moreover, the maximum values of the statistical error estimators (AE, MAPE, and RMSE) for the GEP model are 12%, 14%, and 16%, respectively, of the corresponding values of Ditton’s models.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3