DETERMINATION OF METHANE DESORPTION ZONE FOR THE DESIGN OF A DRAINAGE BOREHOLE PATTERN (CASE STUDY: E4 PANEL OF THE TABAS MECHANIZED COAL MINE, IRAN)

Author:

Hosseini Ali,Najafi Mehdi

Abstract

Underground coal mining is known as one of the major sources of methane emissions which mainly occurs after underground coal extraction. Rock strata in-situ methane can potentially be the most significant hazard in coal mining operations. To prevent or minimize the risks of methane emissions, methane drainage approaches have been adopted by coal mines. Rock mass methane drainage is the most efficient and effective approach toward controlling methane hazards as it prevents and reduces the frequency of methane emissions, outflows into the working area and sudden outbursts of methane and rocks. The method includes drilling boreholes from the tailgate side to the unstressed zone in the roof and floor strata above and below a working coal seam. The coal seam gas content in Tabas Parvadeh I is estimated to be about 16 m3 /t, which is relatively high. Based on exploration data, five distinct coal seams have been identified (B1, B2, C1, C2 and D) at the coal deposit and currently C1 is being worked. Considering the high value of C1 gas content and surrounding rocks, the Methane Drainage System (MDS) has been utilized for gas drainage. This paper tries to determine the desorption area which is essential and helpful for the selection of an effective drilling pattern into the adjacent coal seams. In this study, the methane drainage zone in the E4 panel of the Tabas coal mine was calculated using experimental equations and a drainage borehole pattern was determined.

Publisher

Faculty of Mining, Geology and Petroleum Engineering

Subject

General Earth and Planetary Sciences,Geology,General Energy,Geotechnical Engineering and Engineering Geology,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3